Search results
Results from the WOW.Com Content Network
p53 pathway: In a normal cell, p53 is inactivated by its negative regulator, mdm2. Upon DNA damage or other stresses, various pathways will lead to the dissociation of the p53 and mdm2 complex. Once activated, p53 will induce a cell cycle arrest to allow either repair and survival of the cell or apoptosis to discard the damaged cell.
Many cancers exhibit mutations in the p53 gene, but this mutation can only be detected through extensive DNA sequencing. Studies have shown that cells with p53 mutations have significantly lower levels of PUMA, making it a good candidate for a protein marker of p53 mutations, providing a simpler method for testing for p53 mutations. [44]
While apoptosis is required for natural body function, mutations of the apoptosome pathway cause catastrophic effects and changes in the body. Mutations of the cell pathway can either promote cell death or disallow cell death creating a huge amount of disease in the body.
p53 is a major key player in the growth of cancerous cells. Damaged DNA cells with mutated p53 are at a higher risk of becoming cancerous. Common chemotherapy treatments are genotoxic. These treatments are ineffective in cancer tumor that have mutated p53 since they do not have a functioning p53 to either arrest or kill the damaged cell.
When cells die from necrosis, it's a rather messy affair. The death causes inflammation that can cause further distress of injury within the body. Whereas, apoptosis causes degradation of cellular components without eliciting an inflammatory response. [3] Many cells undergo programmed cell death, or apoptosis, during fetal development.
This function of TIGAR forms part of the p53 mediated DNA damage response where, under low levels of cellular stress, p53 initiates cell cycle arrest to allow the cell time for repair. [13] [17] [18] Under high levels of cellular stress, p53 initiates apoptosis instead. [13] [17] [18]
Apoptosis is a multi-step, multi-pathway cell-death programme that is inherent in every cell of the body. In cancer, the apoptosis cell-division ratio is altered. Cancer treatment by chemotherapy and irradiation kills target cells primarily by inducing apoptosis. [citation needed]
The expression of BID is upregulated by the tumor suppressor p53, and BID has been shown to be involved in p53-mediated apoptosis. [7] The p53 protein is a transcription factor that, when activated as part of the cell's response to stress, regulates many downstream target genes, including BID. However, p53 also has a transcription-independent ...