Search results
Results from the WOW.Com Content Network
Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes.
Chromatic adaptation is a prime example for the case that two different stimuli with thereby different XYZ tristimulus values create an identical color appearance. If the color temperature of the illuminating light source changes, so do the spectral power distribution and thereby the XYZ tristimulus values of the light reflected from the white ...
Color constancy is, in turn, related to chromatic adaptation. Conceptually, color balancing consists of two steps: first, determining the illuminant under which an image was captured; and second, scaling the components (e.g., R, G, and B) of the image or otherwise transforming the components so they conform to the viewing illuminant.
The chromatic adaptation matrix in the diagonal von Kries transform method, however, operates on tristimulus values in the LMS color space. Since colors in most colorspaces can be transformed to the XYZ color space, only one additional transformation matrix is required for any color space to be adapted chromatically: to transform colors from ...
Despite the various inconsistencies seen in the von Kries coefficient law, the law is widely used in many color and vision applications and papers. For example, many chromatic adaptation platforms (CATs) are based on the von Kries coefficient law. [8] It has been used in many applications, especially in many psychophysical research.
The two major parts of the model are its chromatic adaptation transform, CIECAT02, and its equations for calculating mathematical correlates for the six technically defined dimensions of color appearance: brightness , lightness, colorfulness, chroma, saturation, and hue.
A major underpinning of traditional color theory is that colors carry significant cultural symbolism, or even have immutable, universal meaning. As early as the ancient Greek philosophers, many theorists have devised color associations and linked particular connotative meanings to specific colors. [21]
Log-log plot of spatial contrast sensitivity functions for luminance and chromatic contrast [improve caption] The neurological conversion of color from LMS color space to the opponent process is believed to take place mostly in the lateral geniculate nucleus (LGN) of the thalamus, though it may also take place in the retina bipolar cells.