Search results
Results from the WOW.Com Content Network
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an ...
Linear motion – motion that follows a straight linear path, and whose displacement is exactly the same as its trajectory. [Also known as rectilinear motion] Reciprocal motion; Brownian motion – the random movement of very small particles; Circular motion; Rotatory motion – a motion about a fixed point. (e.g. Ferris wheel).
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
[4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.
For example, a multi-spindle lathe is used to rotate the material on its axis to effectively increase the productivity of cutting, deformation and turning operations. [2] The angle of rotation is a linear function of time, which modulo 360° is a periodic function. An example of this is the two-body problem with circular orbits.
With cylindrical co-ordinates which are described as î and j, the motion is best described in polar form with components that resemble polar vectors.As with planar motion, the velocity is always tangential to the curve, but in this form acceleration consist of different intermediate components that can now run along the radius and its normal vector.
The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.
The linear velocity of a rigid body is a vector quantity, equal to the time rate of change of its linear position. Thus, it is the velocity of a reference point fixed to the body. During purely translational motion (motion with no rotation), all points on a rigid body move with the same velocity. However, when motion involves rotation, the ...