enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition) , S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7 .

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The following are the rules for the derivatives of the most common basic functions. Here, a {\displaystyle a} is a real number, and e {\displaystyle e} is the base of the natural logarithm, approximately 2.71828 .

  4. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...

  5. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h ( x ) = f ( x ) g ( x ) {\displaystyle h(x)={\frac {f(x)}{g(x)}}} , where both f and g are differentiable and g ( x ) ≠ 0. {\displaystyle g(x)\neq 0.}

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  7. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3]

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Higher derivatives can also be defined for functions of several variables, studied in multivariable calculus. In this case, instead of repeatedly applying the derivative, one repeatedly applies partial derivatives with respect to different variables.