Search results
Results from the WOW.Com Content Network
Length Type Pearson hashing: 8 bits (or more) XOR/table Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add
The bit length of each word defines, for one thing, how many memory locations can be independently addressed by the processor. In cryptography , the key size of an algorithm is the bit length of the keys used by that algorithm, and it is an important factor of an algorithm's strength.
Algorithm Output size (bits) Internal state size [note 1] Block size Length size Word size Rounds; BLAKE2b: 512 512 1024 128 [note 2] 64 12 BLAKE2s: 256 256 512 64 [note 3] 32 10 BLAKE3: Unlimited [note 4] 256 [note 5] 512 64 32 7 GOST: 256 256 256 256 32 32 HAVAL: 256/224/192/160/128 256 1024 64 32 3/4/5 MD2: 128 384 128 – 32 18 MD4: 128 128 ...
The sponge construction for hash functions. P i are blocks of the input string, Z i are hashed output blocks.. In cryptography, a sponge function or sponge construction is any of a class of algorithms with finite internal state that take an input bit stream of any length and produce an output bit stream of any desired length.
Since two-thirds of the constraints are known, only the number of bits for each symbol need be transmitted: 2, 1, 3, 3 With knowledge of the canonical Huffman algorithm, it is then possible to recreate the entire table (symbol and code values) from just the bit-lengths. Unused symbols are normally transmitted as having zero bit length.
The algorithm can be described by the following pseudocode, which computes the hash of message C using the permutation table T: algorithm pearson hashing is h := 0 for each c in C loop h := T[ h xor c ] end loop return h The hash variable (h) may be initialized differently, e.g. to the length of the data (C) modulo 256.
The Whirlpool Galaxy (M51), which inspired the name of the algorithm. [2] Whirlpool is a hash designed after the Square block cipher, and is considered to be in that family of block cipher functions. Whirlpool is a Miyaguchi-Preneel construction based on a substantially modified Advanced Encryption Standard (AES).
The current version, completed April 3, 2011, is MurmurHash3, [12] [13] which yields a 32-bit or 128-bit hash value. When using 128-bits, the x86 and x64 versions do not produce the same values, as the algorithms are optimized for their respective platforms.