Search results
Results from the WOW.Com Content Network
A gauge symmetry of a Lagrangian is defined as a differential operator on some vector bundle taking its values in the linear space of (variational or exact) symmetries of . Therefore, a gauge symmetry of L {\displaystyle L} depends on sections of E {\displaystyle E} and their partial derivatives. [ 1 ]
Quantum electrodynamics is an abelian gauge theory with the symmetry group U(1) and has one gauge field, the electromagnetic four-potential, with the photon being the gauge boson. The Standard Model is a non-abelian gauge theory with the symmetry group U(1) × SU(2) × SU(3) and has a total of twelve gauge bosons: the photon , three weak bosons ...
Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory that admits gauge symmetry. In mathematics theory means a mathematical theory , encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a ...
Gauge symmetry is an example of a local symmetry, with the symmetry described by a Lie group (which mathematically describe continuous symmetries), which in the context of gauge theory is called the gauge group of the theory. Quantum chromodynamics and quantum electrodynamics are famous examples of gauge theories.
For example, the configuration space of a rigid body such as a satellite is the group of Euclidean motions (translations and rotations in space), while the configuration space for a liquid crystal is the group of diffeomorphisms coupled with an internal state (gauge symmetry or order parameter).
The local SU(3) × SU(2) × U(1) gauge symmetry is the internal symmetry. The three factors of the gauge symmetry together give rise to the three fundamental interactions, after some appropriate relations have been defined, as we shall see.
The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.
A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P → X {\displaystyle P\to X} with a structure Lie group G {\displaystyle G} , a gauge group is defined to be a group of its vertical automorphisms.