Search results
Results from the WOW.Com Content Network
The Gauckler–Manning formula states: = / / where: V is the cross-sectional average velocity (dimension of L/T; units of ft/s or m/s); n is the Gauckler–Manning coefficient. Units of n are often omitted, however n is not dimensionless, having dimension of T/L 1/3 and units of s/m 1/3.
[3] The report validated the Gauckler formula and by inference, the Manning formula. Strickler proposed that the Ganguillet-Kutter n-value, used to characterize hydraulic roughness in the Manning formula, could be defined as a function of surface roughness, . [1] [2] [4]
"The Manning formula, known also as the Gauckler-Strickler formula in Europe, is an empirical formula for open channel flow, or flow driven by gravity. It was developed by the Irish engineer Robert Manning. For more than a hundred years, this formula lacked a theoretical derivation.
Strickler is a surname. Notable people with the surname include: Albert Strickler (1887–1963), co-author of the Gauckler–Manning–Strickler formula; Amelia Strickler (born 1994), British shot putter
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity.It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.
Robert Manning. Robert Manning (22 October 1816 – 9 December 1897) was an Irish hydraulic engineer best known for creation of the Manning formula. Manning was born in Normandy, France, the son of a soldier who had fought the previous year at the Battle of Waterloo. In 1826 he moved to Waterford, Ireland and in time worked as an accountant.
Manning's formula is a modified Chézy formula that combines many of his aforementioned contemporaries' work. [ 6 ] [ 7 ] Manning's modifications to the Chézy formula allowed the entire similarity parameter to be calculated by channel characteristics rather than by experimental measurements. [ 1 ]
It quantifies the impact of surface irregularities and obstructions on the flow of water. One roughness coefficient is Manning's n-value. [2] Manning's n is used extensively around the world to predict the degree of roughness in channels. The coefficient is critical in hydraulic engineering, floodplain management, and sediment transport studies.