Search results
Results from the WOW.Com Content Network
The term "hot electron" comes from the effective temperature term used when modelling carrier density (i.e., with a Fermi-Dirac function) and does not refer to the bulk temperature of the semiconductor (which can be physically cold, although the warmer it is, the higher the population of hot electrons it will contain all else being equal).
The heat dissipation in integrated circuits problem has gained an increasing interest in recent years due to the miniaturization of semiconductor devices. The temperature increase becomes relevant for cases of relatively small-cross-sections wires, because such temperature increase may affect the normal behavior of semiconductor devices.
In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium.It states that, under thermal equilibrium, the product of the free electron concentration and the free hole concentration is equal to a constant square of intrinsic carrier concentration .
At the atomic scale, a temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side. This is due to charge carrier particles having higher mean velocities (and thus kinetic energy) at higher temperatures, leading them to migrate on average towards the colder side, in the process carrying heat across the material.
Furthermore, lattice vibrations increase with temperature, which increases the effect of electron scattering. Additionally, the number of charge carriers within a semiconductor will increase, as more carriers have the energy required to cross the band-gap threshold and so conductivity of semiconductors also increases with increasing temperature ...
The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...
The proximity effect is manifested by observations of a supercurrent, i.e. a current flowing through the graphene junction with zero voltage on the junction. By using the gate electrodes the researches have shown that the proximity effect occurs when the carriers in the graphene are electrons as well as when the carriers are holes.
Iron-doped tin dioxide, with Curie temperature at 340 K; Strontium-doped tin dioxide (SrSnO 2) – Dilute magnetic semiconductor. Can be synthesized an epitaxial thin film on a silicon chip. [20] [21] Europium(II) oxide, with a Curie temperature of 69K. The curie temperature can be more than doubled by doping (e.g. oxygen deficiency, Gd).