Search results
Results from the WOW.Com Content Network
Thiocyanate used to be known as rhodanide (from a Greek word for rose) because of the red colour of its complexes with iron. Thiocyanate is produced by the reaction of elemental sulfur or thiosulfate with cyanide: + + + The second reaction is catalyzed by thiosulfate sulfurtransferase, a hepatic mitochondrial enzyme, and by other sulfur ...
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
Thiocyanate complexes are not widely used commercially. Possibly the oldest application of thiocyanate complexes was the use of thiocyanate as a test for ferric ions in aqueous solution. [14] The reverse was also used: testing for the presence of thiocyanate by the addition of ferric salts. The 1:1 complex of thiocyanate and iron is deeply red.
Thiocyanate is a common test for the presence of iron(III) as it forms the blood-red [Fe(SCN)(H 2 O) 5] 2+. Like manganese(II), most iron(III) complexes are high-spin, the exceptions being those with ligands that are high in the spectrochemical series such as cyanide. An example of a low-spin iron(III) complex is [Fe(CN) 6] 3−.
In chemistry, ion association is a chemical reaction whereby ions of opposite electric charge come together in solution to form a distinct chemical entity. [1] [2] Ion associates are classified, according to the number of ions that associate with each other, as ion pairs, ion triplets, etc. Ion pairs are also classified according to the nature of the interaction as contact, solvent-shared or ...
Thiocyanate is a common test for the presence of iron(III) as it forms the blood-red [Fe(SCN)(H 2 O) 5] 2+. Like manganese(II), most iron(III) complexes are high-spin, the exceptions being those with ligands that are high in the spectrochemical series such as cyanide. An example of a low-spin iron(III) complex is [Fe(CN) 6] 3−.
When the energy difference between the high-spin and low-spin states is comparable to kT (k is the Boltzmann constant and T the temperature) an equilibrium is established between the spin states, involving what have been called "electronic isomers". Tris-dithiocarbamato iron(III), Fe(S 2 CNR 2) 3, is a well-documented example.
The Raman spectrum of an iron(II) complex in the HS and LS state, emphasizing the changes in the M-L vibrational modes, where a shift from 2114 cm −1 to 2070 cm −1 corresponds to changes in the stretching vibrational modes of the thiocyanate ligand from a LS state to a HS state, respectively. SCO behavior can be followed with UV-vis ...