Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of ...
In mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well defined , ill defined or ambiguous . [ 1 ]
In naive set theory, a set is described as a well-defined collection of objects. These objects are called the elements or members of the set. Objects can be anything: numbers, people, other sets, etc. For instance, 4 is a member of the set of all even integers. Clearly, the set of even numbers is infinitely large; there is no requirement that a ...
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let R be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".)
The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.
Set is the prototype of a concrete category; other categories are concrete if they are "built on" Set in some well-defined way. Every two-element set serves as a subobject classifier in Set. The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set ...