enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ranked poset - Wikipedia

    en.wikipedia.org/wiki/Ranked_poset

    In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...

  3. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and

  4. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    Algebraic poset. A poset is algebraic if it has a base of compact elements. Antichain. An antichain is a poset in which no two elements are comparable, i.e., there are no two distinct elements x and y such that x ≤ y. In other words, the order relation of an antichain is just the identity relation. Approximates relation. See way-below relation.

  6. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which does not have any upper bound. If the number 0 is included, this will be the greatest element, since this is a ...

  7. Grade - Wikipedia

    en.wikipedia.org/wiki/Grade

    Graded poset, a partially ordered set equipped with a rank function, sometimes called a ranked poset; Graded vector space, a vector space with an extra piece of ...

  8. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    If both exist, the poset is called a bounded poset. The notation of 0 and 1 is used preferably when the poset is a complemented lattice , and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top.

  9. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair (x,y) of P, y < i x for some order < i in R.