Search results
Results from the WOW.Com Content Network
The term B-tree may refer to a specific design or it may refer to a general class of designs. In the narrow sense, a B-tree stores keys in its internal nodes but need not store those keys in the records at the leaves. The general class includes variations such as the B+ tree, the B * tree and the B *+ tree.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.
In software engineering, a class diagram [1] in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among objects. The class diagram is the main building block of object-oriented modeling.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Deletion from vEB trees is the trickiest of the operations. The call Delete(T, x) that deletes a value x from a vEB tree T operates as follows: If T.min = T.max = x then x is the only element stored in the tree and we set T.min = M and T.max = −1 to indicate that the tree is empty.
The algorithms for bulk operations aren't just applicable to the red–black tree, but can be adapted to other sorted sequence data structures also, like the 2–3 tree, 2–3–4 tree and (a,b)-tree. In the following different algorithms for bulk insert will be explained, but the same algorithms can also be applied to removal and update.