Search results
Results from the WOW.Com Content Network
Nuclear fission. Spontaneous; Products. ... These equations need to be refined such that the notation is defined as has been done for the previous sets of equations ...
Nuclear fission is an extreme example of large-amplitude collective motion that results in the division of a parent nucleus into two or more fragment nuclei. The fission process can occur spontaneously, or it can be induced by an incident particle."
In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...
The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...
Nuclear fission is the reverse process to fusion. For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks apart into two lighter ones. The process of alpha decay is in essence a special type of spontaneous nuclear fission. It is ...
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
Consider only prompt neutrons, and let ν denote the number of prompt neutrons generated in a nuclear fission. For example, ν ≈ 2.5 for uranium-235. Then, criticality occurs when ν·q = 1. The dependence of this upon geometry, mass, and density appears through the factor q.