enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Note that the conditional expected value ⁡ is a random variable in its own right, whose value depends on the value of . Notice that the conditional expected value of given the event = is a function of (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!).

  3. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications ...

  5. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].

  7. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    Recall that variance is the expected squared deviation between a random variable (say, Y) and its expected value. The expected value can be thought of as a reasonable prediction of the outcomes of the random experiment (in particular, the expected value is the best constant prediction when predictions are assessed by expected squared prediction ...

  8. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.

  9. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant.