Ad
related to: beam curve ratio
Search results
Results from the WOW.Com Content Network
The ratio of the BPP of the real beam to that of an ideal Gaussian beam at the same wavelength is known as M 2 ("M squared"). The M 2 for a Gaussian beam is one. All real laser beams have M 2 values greater than one, although very high quality beams can have values very close to one.
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). q {\displaystyle q} is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of x {\displaystyle x} , w {\displaystyle w ...
The beam is originally straight, and any taper is slight; The beam experiences only linear elastic deformation; The beam is slender (its length to height ratio is greater than 10) Only small deflections are considered (max deflection less than 1/10 of the span).
The following procedure provides a method that may be used to determine the displacement and slope at a point on the elastic curve of a beam using the moment-area theorem. Determine the reaction forces of a structure and draw the M/EI diagram of the structure.
It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.
Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa.. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle.
In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
Ad
related to: beam curve ratio