Search results
Results from the WOW.Com Content Network
Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve “difficult” problems, at least approximately, for which no exact or satisfactory solution methods are known.
Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover. [ 1 ] [ 2 ] Evolutionary programming differs from evolution strategy ES( μ + λ {\displaystyle \mu +\lambda } ) in one detail. [ 1 ]
Evolutionary computation from computer science is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms.
Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs.It applies the genetic operators selection according to a predefined fitness measure, mutation and crossover.
In computer science and operations research, a memetic algorithm (MA) is an extension of an evolutionary algorithm (EA) that aims to accelerate the evolutionary search for the optimum. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or ...
The population model of an evolutionary algorithm (EA) describes the structural properties of its population to which its members are subject. A population is the set of all proposed solutions of an EA considered in one iteration, which are also called individuals according to the biological role model.
Neuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, and rules. [1] It is most commonly applied in artificial life , general game playing [ 2 ] and evolutionary robotics .
An evolutionary algorithm (EA) is a heuristic optimization algorithm using techniques inspired by mechanisms from organic evolution such as mutation, recombination, and natural selection to find an optimal configuration for a specific system within specific constraints.