Search results
Results from the WOW.Com Content Network
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...
Distances between where certain values occur are distributed differently from those in a random sequence distribution. Defects exhibited by flawed PRNGs range from unnoticeable (and unknown) to very obvious. An example was the RANDU random number algorithm used for decades on mainframe computers. It was seriously flawed, but its inadequacy went ...
Thus, both products can be computed with a single-width product, and the difference between them lies in the range [1−m, m−1], so can be reduced to [0, m−1] with a single conditional add. [13] A second disadvantage is that it is awkward to convert the value 1 ≤ x < m to uniform random bits. If a prime just less than a power of 2 is used ...
The probability mass function of a Poisson-distributed random variable with mean μ is given by (;) =!.for (and zero otherwise). The Skellam probability mass function for the difference of two independent counts = is the convolution of two Poisson distributions: (Skellam, 1946)
Random variables are assumed to have the following properties: complex constants are possible realizations of a random variable; the sum of two random variables is a random variable; the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and
The cross-covariance is also relevant in signal processing where the cross-covariance between two wide-sense stationary random processes can be estimated by averaging the product of samples measured from one process and samples measured from the other (and its time shifts).
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.