Search results
Results from the WOW.Com Content Network
Gravimeter with variant of Repsold pendulum The large increase in gravity measurement accuracy made possible by Kater's pendulum established gravimetry as a regular part of geodesy . To be useful, it was necessary to find the exact location (latitude and longitude) of the 'station' where a gravity measurement was taken, so pendulum measurements ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.
Fig. 1: Schematic of the single rotary inverted pendulum system. Consider the rotational inverted pendulum mounted to a DC motor as shown in Fig. 1. The DC motor is used to apply a torque to Arm 1. The link between Arm 1 and Arm 2 is not actuated but free to rotate.
Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down. It is named after Russian Nobel Prize laureate physicist Pyotr Kapitza , who in 1951 developed a theory which successfully explains some of its unusual properties. [ 1 ]
Gravimeter with variant of Repsold–Bessel pendulum An Autograv CG-5 gravimeter being operated. A gravimeter is an instrument used to measure gravitational acceleration. Every mass has an associated gravitational potential. The gradient of this potential is a force. A gravimeter measures this gravitational force.
A Wilberforce pendulum can be designed by approximately equating the frequency of harmonic oscillations of the spring-mass oscillator f T, which is dependent on the spring constant k of the spring and the mass m of the system, and the frequency of the rotating oscillator f R, which is dependent on the moment of inertia I and the torsional ...
The position of the pendulum is sensed by precision electrical contacts or by optical or electromagnetic means. Should acceleration displace the pendulum arm from its null position the sensing mechanism will operate the torque motor and rotate the pedestal such that the property of gyroscopic precession restores the pendulum to its null position.