Search results
Results from the WOW.Com Content Network
The SOS chromotest is a biological assay to assess the genotoxic potential of chemical compounds. The test is a colorimetric assay which measures the expression of genes induced by genotoxic agents in Escherichia coli, by means of a fusion with the structural gene for β-galactosidase. The test is performed over a few hours in columns of a 96 ...
Senescence-associated beta-galactosidase, along with p16 Ink4A, is regarded to be a biomarker of cellular senescence. [1] [2] Its existence was proposed in 1995 by Dimri et al. [3] following the observation that when beta-galactosidase assays were carried out at pH 6.0, only cells in senescence state develop staining.
β-Galactosidase (EC 3.2.1.23, beta-gal or β-gal; systematic name β-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. (This enzyme digests many β-Galactosides, not just lactose.
The degree of color development is an indirect measure of the β-galactosidase produced, which itself is directly related to the amount of DNA damage. The Umu Chromotest has the added advantage of having its procedure codified under ISO 13829 "Water Quality- Determination of genotoxicity of water and waste water using the umu-test".
ortho-Nitrophenyl-β-galactoside (ONPG) is a colorimetric and spectrophotometric substrate for detection of β-galactosidase activity. [1] This compound is normally colorless. However, if β-galactosidase is present, it hydrolyzes the ONPG molecule into galactose and ortho-nitrophen
Galactosidases are enzymes (glycoside hydrolases) that catalyze the hydrolysis of galactosides into monosaccharides.. Galactosides can be classified as either alpha or beta. If the galactoside is classified as an alpha-galactoside, the enzyme is called alpha-galactosidase, and is responsible for catalyzing the hydrolysis of substrates that contain α-galactosidic residues, such as ...
Galactosialidosis occurs when a patient inherits two copies of a mutated CTSA gene. Encoding of the mutated gene results in a defective form of the protein cathepsin A. When the structure of cathepsin A is disrupted due to mutation, it becomes non-functional and cannot form a digestive complex with neuraminidase-1 and beta-galactosidase.
The presence of an active β-galactosidase can be detected by X-gal, a colourless analog of lactose that may be cleaved by β-galactosidase to form 5-bromo-4-chloro-indoxyl, which then spontaneously dimerizes and oxidizes to form a bright blue insoluble pigment 5,5'-dibromo-4,4'-dichloro-indigo. This results in a characteristic blue colour in ...