enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duplication and elimination matrices - Wikipedia

    en.wikipedia.org/wiki/Duplication_and...

    In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For example, for the 2×2 matrix = [], the half-vectorization is ⁡ = []. There exist unique matrices transforming the half-vectorization of a matrix to its vectorization and vice versa called, respectively, the duplication matrix and the elimination matrix .

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ⁡ ( B ) d . {\displaystyle \det ...

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    For example, we might swap rows to perform partial pivoting, or we might do it to set the pivot element , on the main diagonal to a non-zero number so that we can complete the Gaussian elimination. For our matrix (), we want to set every element below , to zero (where , is the element in the n-th column of the main diagonal).

  6. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in

  7. Bruhat decomposition - Wikipedia

    en.wikipedia.org/wiki/Bruhat_decomposition

    In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) = of certain algebraic groups = into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases.

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the (n−1) th derivative of row one.

  9. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...