Search results
Results from the WOW.Com Content Network
The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...
In cosmology, the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density (the small value of the cosmological constant) and the much larger theoretical value of zero-point energy suggested by quantum field theory.
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
Lambda (Λ), commonly known as the cosmological constant, describes the ratio of the density of dark energy to the critical energy density of the universe, given certain reasonable assumptions such as that dark energy density is a constant. In terms of Planck units, and as a natural dimensionless value, Λ is on the order of 10 −122. [21]
For many years the cosmological constant was almost universally assumed to be zero. More recent astronomical observations have shown an accelerating expansion of the universe, and to explain this a positive value of Λ is needed. [18] [19] The effect of the cosmological constant is negligible at the scale of a galaxy or smaller.
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components: . a cosmological constant, denoted by lambda (Λ), associated with dark energy
In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy .
The four universal constants that, by definition, have a numeric value 1 when expressed in these units are: c, the speed of light in vacuum, G, the gravitational constant, ħ, the reduced Planck constant, and; k B, the Boltzmann constant.