Search results
Results from the WOW.Com Content Network
Recursive partitioning is a statistical method for multivariable analysis. [1] Recursive partitioning creates a decision tree that strives to correctly classify members of the population by splitting it into sub-populations based on several dichotomous independent variables .
In single-variable calculus, operations like differentiation and integration are made to functions of a single variable. In multivariate calculus, it is required to generalize these to multiple variables, and the domain is therefore multi-dimensional. Care is therefore required in these generalizations, because of two key differences between 1D ...
This is the aim of multiple factor analysis which balances the different issues (i.e. the different groups of variables) within a global analysis and provides, beyond the classical results of factorial analysis (mainly graphics of individuals and of categories), several results (indicators and graphics) specific of the group structure.
dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...
Note that this partition is not optimal: in the partition {8,7}, {6,5,4} the sum-difference is 0. However, there is evidence that it provides a "good" partition: If the numbers are uniformly distributed in [0,1], then the expected difference between the two sums is ( ())).
The partition function is commonly used as a probability-generating function for expectation values of various functions of the random variables. So, for example, taking β {\displaystyle \beta } as an adjustable parameter, then the derivative of log ( Z ( β ) ) {\displaystyle \log(Z(\beta ))} with respect to β {\displaystyle \beta }
Balanced number partitioning is a variant of multiway number partitioning in which there are constraints on the number of items allocated to each set. The input to the problem is a set of n items of different sizes, and two integers m, k. The output is a partition of the items into m subsets, such that the number of items in each subset is at ...
Denote the n objects to partition by the integers 1, 2, ..., n. Define the reduced Stirling numbers of the second kind, denoted (,), to be the number of ways to partition the integers 1, 2, ..., n into k nonempty subsets such that all elements in each subset have pairwise distance at least d.