Search results
Results from the WOW.Com Content Network
Raj Kumar Pathria (born March 30, 1933) is a theoretical physicist, a Distinguished Professor Emeritus at University of Waterloo, and an Urdu poet. [1] [2]Pathria is known for his work on superfluidity in liquid helium, Lorentz transformation of thermodynamic quantities, an exact evaluation of lattice sums and finite-size effects in phase transitions.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In magnetohydrodynamics, the magnetic Reynolds number (R m) is a dimensionless quantity that estimates the relative effects of advection or induction of a magnetic field by the motion of a conducting medium to the magnetic diffusion.
Fluid dynamicists define the chord Reynolds number R = Vc/ν, where V is the flight speed, c is the chord length, and ν is the kinematic viscosity of the fluid in which the airfoil operates, which is 1.460 × 10 −5 m 2 /s for the atmosphere at sea level. [19]
In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
In thermodynamics, a quasi-static process, also known as a quasi-equilibrium process (from Latin quasi, meaning ‘as if’ [1]), is a thermodynamic process that happens slowly enough for the system to remain in internal physical (but not necessarily chemical) thermodynamic equilibrium.