Search results
Results from the WOW.Com Content Network
A linear function on a preordered vector space is called positive if it satisfies either of the following equivalent conditions: . implies (); if then () (). [1]; The set of all positive linear forms on a vector space with positive cone , called the dual cone and denoted by , is a cone equal to the polar of .
A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.
If contains an interior point of then every continuous positive linear form on has an extension to a continuous positive linear form on . Corollary : [ 1 ] Let X {\displaystyle X} be an ordered vector space with positive cone C , {\displaystyle C,} let M {\displaystyle M} be a vector subspace of E , {\displaystyle E,} and let f {\displaystyle f ...
The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...
The M in M-estimation stands for "maximum likelihood type". The method is robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables (leverage points). In fact, when there are outliers in the explanatory variables, the method has no advantage over least squares.
For such g, one can write f as a sum of positive linear functionals: f = g + g' . So π is unitarily equivalent to a subrepresentation of π g ⊕ π g' . This shows that π is irreducible if and only if any such π g is unitarily equivalent to π, i.e. g is a scalar multiple of f, which proves the theorem. Extremal states are usually called ...
In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin 's " Radon–Nikodym " theorem for completely positive maps.
In the third case (bottom left), the linear relationship is perfect, except for one outlier which exerts enough influence to lower the correlation coefficient from 1 to 0.816. Finally, the fourth example (bottom right) shows another example when one outlier is enough to produce a high correlation coefficient, even though the relationship ...