Search results
Results from the WOW.Com Content Network
DNA nanotechnology, specifically, is an example of bottom-up molecular self-assembly, in which molecular components spontaneously organize into stable structures; the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers. [19]
Nucleic acid design is used in DNA nanotechnology to design strands which will self-assemble into a desired target structure. These include examples such as DNA machines , periodic two- and three-dimensional lattices, polyhedra, and DNA origami . [ 2 ]
Due to their structure and function, SNAs occupy a materials space distinct from DNA nanotechnology and DNA origami, [20] [21] (although both are important to the field of nucleic acid–guided programmable materials. [22] With DNA origami, such structures are synthesized via DNA hybridization events.
The term has also been used to describe the hierarchical assembly of artificial nucleic acid building blocks used in DNA nanotechnology. [3] The quaternary structure of DNA refers to the formation of chromatin. Because the human genome is so large, DNA must be condensed into chromatin, which consists of repeating units known as nucleosomes.
For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to ...
Self-assembled nano-structure is an object that appears as a result of ordering and aggregation of individual nano-scale objects guided by some physical principle. A particularly counter-intuitive example of a physical principle that can drive self-assembly is entropy maximization.
The method of DNA origami was developed by Paul Rothemund at the California Institute of Technology. [6] In contrast to common top-down fabrication methods such as 3D printing or lithography which involve depositing or removing material through a tool, DNA Nanotechnology, as well as DNA Origami as a subset, is a bottom-up fabrication method.
DNA structure can provide means to assemble 2D and 3D nanomechanical devices. DNA based machines can be activated using small molecules, proteins and other molecules of DNA. [ 44 ] [ 45 ] [ 46 ] Biological circuit gates based on DNA materials have been engineered as molecular machines to allow in-vitro drug delivery for targeted health problems ...