Search results
Results from the WOW.Com Content Network
Time of flight of a light pulse reflecting off a target. A time-of-flight camera (ToF camera), also known as time-of-flight sensor (ToF sensor), is a range imaging camera system for measuring distances between the camera and the subject for each point of the image based on time-of-flight, the round trip time of an artificial light signal, as provided by a laser or an LED.
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties (such as composition or flow rate).
Lidar (/ ˈ l aɪ d ɑːr /, also LIDAR, LiDAR or LADAR, an acronym of "light detection and ranging" [1] or "laser imaging, detection, and ranging" [2]) is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver.
Typical data collected includes aerial photography, Lidar, remote sensing (using various visible and invisible bands of the electromagnetic spectrum, such as infrared, gamma, or ultraviolet) and geophysical data (such as aeromagnetic surveys and gravity measurements). It can also refer to a chart or map made by analyzing a region from the air.
Time of flight - this measures the time taken for a light pulse to travel to the target and back. With the speed of light known, and an accurate measurement of the time taken, the distance can be calculated. Many pulses are fired sequentially and the average response is most commonly used.
Unlike RADAR which relies on doppler shifts to directly measure speed or LIDAR which relies on the principle of time-of-flight to calculate speed, VIDAR measures the speed of vehicles by means of tracking an object through vision cameras. High precision speed measurement can be achieved if stereoscopic vision techniques are used.
A time-of-flight (TOF) detector is a particle detector which can discriminate between a lighter and a heavier elementary particle of same momentum using their time of flight between two scintillators [1]. The first of the scintillators activates a clock upon being hit while the other stops the clock upon being hit.
The peak at time = 5 is a measure of the time shift between the recorded waveforms, which is also the value needed for equation 3. Figure 4b shows the same type of simulation for a wide-band waveform from the emitter. The time shift is 5 time units because the geometry and wave speed is the same as the Figure 4a example.