enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The X axis is now at angle γ with respect to the x axis. The XYZ system rotates again, but this time about the x axis by β. The Z axis is now at angle β with respect to the z axis. The XYZ system rotates a third time, about the z axis again, by angle α. In sum, the three elemental rotations occur about z, x and z.

  6. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  7. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The rotation axis is sometimes called the Euler axis. The axis–angle representation is predicated on Euler's rotation theorem, which dictates that any rotation or sequence of rotations of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. It is one of many rotation formalisms in three dimensions.

  8. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The group SO(3) can therefore be identified with the group of these matrices under matrix multiplication. These matrices are known as "special orthogonal matrices", explaining the notation SO(3). The group SO(3) is used to describe the possible rotational symmetries of an object, as well as the possible orientations of an object in space.