Search results
Results from the WOW.Com Content Network
md5sum is a computer program that calculates and verifies 128-bit MD5 hashes, as described in RFC 1321. The MD5 hash functions as a compact digital fingerprint of a file. As with all such hashing algorithms, there is theoretically an unlimited number of files that will have any given MD5 hash.
The MD5 message-digest algorithm is a widely used hash function producing a 128-bit hash value. MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function MD4, [3] and was specified in 1992 as RFC 1321. MD5 can be used as a checksum to verify data integrity against unintentional corruption.
For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit) 8750. The mid-squares method produces a reasonable hash code if there is not a lot of leading or trailing zeros in the key.
MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function, MD4, and was specified in 1992 as RFC 1321. Collisions against MD5 can be calculated within seconds, which makes the algorithm unsuitable for most use cases where a cryptographic hash is required. MD5 produces a digest of 128 bits (16 bytes).
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
The MD5 hash of the combined method and digest URI is calculated, e.g. of "GET" and "/dir/index.html". The result is referred to as HA2. The MD5 hash of the combined HA1 result, server nonce (nonce), request counter (nc), client nonce (cnonce), quality of protection code (qop) and HA2 result is calculated.
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
The first chain assumes the hash value is in the last hash position and just applies R k; the next chain assumes the hash value is in the second-to-last hash position and applies R k−1, then H, then R k; and so on until the last chain, which applies all the reduction functions, alternating with H. This creates a new way of producing a false ...