Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
The role of symmetry in grouping and figure/ground organization has been confirmed in many studies. For instance, detection of reflectional symmetry is faster when this is a property of a single object. [29] Studies of human perception and psychophysics have shown that detection of symmetry is fast, efficient and robust to perturbations.
Symmetries of a regular pentagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center. The regular pentagon has Dih 5 symmetry, order 10. Since 5 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 5 ...
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
A point reflection is an involution: applying it twice is the identity transformation. An object that is invariant under a point reflection is said to possess point symmetry (also called inversion symmetry or central symmetry). A point group including a point reflection among its symmetries is called centrosymmetric.
Finite reflection groups are the point groups C nv, D nh, and the symmetry groups of the five Platonic solids. Dual regular polyhedra (cube and octahedron, as well as dodecahedron and icosahedron) give rise to isomorphic symmetry groups. The classification of finite reflection groups of R 3 is an instance of the ADE classification.