enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...

  3. Electric-field screening - Wikipedia

    en.wikipedia.org/wiki/Electric-field_screening

    The chemical potential μ is, by definition, the energy of adding an extra electron to the fluid. This energy may be decomposed into a kinetic energy T part and the potential energy − eφ part. Since the chemical potential is kept constant, Δ μ = Δ T − e Δ ϕ = 0. {\displaystyle \Delta \mu =\Delta T-e\Delta \phi =0.}

  4. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  5. Carreau fluid - Wikipedia

    en.wikipedia.org/wiki/Carreau_fluid

    Where: , , and are material coefficients: is the viscosity at zero shear rate (Pa.s), is the viscosity at infinite shear rate (Pa.s), is the characteristic time (s) and power index. The dynamics of fluid motions is an important area of physics, with many important and commercially significant applications.

  6. Glen–Nye flow law - Wikipedia

    en.wikipedia.org/wiki/Glen–Nye_flow_law

    Under the application of sustained force ice will flow as a fluid, and changes to the force applied will result in non-linear changes to the resulting flow. [4] This fluid behavior of ice, which the Glen–Nye flow law is intended to represent, is accommodated within the solid ice by creep, [4] and is a dominant mode of glacial ice flow. [5] [3 ...

  7. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate. The relationship between shear stress, strain rate and the velocity gradient for the power law model are: τ x y = − m | γ ˙ | n − 1 d v x d y , {\displaystyle \tau _{xy}=-m\left|{\dot {\gamma ...

  8. Computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Computational_fluid_dynamics

    The computer power available paced development of three-dimensional methods. Probably the first work using computers to model fluid flow, as governed by the Navier–Stokes equations, was performed at Los Alamos National Lab, in the T3 group. [5] [6] This group was led by Francis H. Harlow, who is widely considered one of the pioneers of CFD.

  9. Murray's law - Wikipedia

    en.wikipedia.org/wiki/Murray's_law

    Murray's law assumes material is passively transported by the flow of fluid in a network of tubular pipes, [1] and that the network requires energy to maintain both flow and structural integrity. [2] Variation in the fluid viscosity across scales will affect the Murray's law exponent, but is usually too small to matter. [3]