Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
For a definite integral, the bounds change once the substitution is performed and are determined using the equation = , with values in the range < <. Alternatively, apply the boundary terms directly to the formula for the antiderivative.
3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
Example 2: Antiderivatives of tangent and cotangent [ edit ] The tangent function can be integrated using substitution by expressing it in terms of the sine and cosine: tan x = sin x cos x {\displaystyle \tan x={\tfrac {\sin x}{\cos x}}} .
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.
For a complete list of integral formulas, see lists of integrals. The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of ...