Search results
Results from the WOW.Com Content Network
Gravitational "weight" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. [2] This force can be added to by any other kind of force.
The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 was concentrated at the center of the mass distribution (as noted above). The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from
The pound-force has a metric counterpart, less commonly used than the newton: the kilogram-force (kgf) (sometimes kilopond), is the force exerted by standard gravity on one kilogram of mass. The kilogram-force leads to an alternate, but rarely used unit of mass: the metric slug (sometimes mug or hyl) is that mass that accelerates at 1 m·s −2 ...
The force known as "weight" is proportional to mass and acceleration in all situations where the mass is accelerated away from free fall. For example, when a body is at rest in a gravitational field (rather than in free fall), it must be accelerated by a force from a scale or the surface of a planetary body such as the Earth or the Moon .
In the absence of a net external force, the center of mass moves at a constant speed in a straight line. This applies, for example, to a collision between two bodies. [50] If the total external force is not zero, then the center of mass changes velocity as though it were a point body of mass . This follows from the fact that the internal forces ...
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
According to Newton's law of universal gravitation, the magnitude of the attractive force (F) between two bodies each with a spherically symmetric density distribution is directly proportional to the product of their masses, m 1 and m 2, and inversely proportional to the square of the distance, r, directed along the line connecting their centres of mass: =.