Search results
Results from the WOW.Com Content Network
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The conversion factor is 10 8 maxwell per weber, since flux is the integral of field over an area, area having the units of the square of distance, thus 10 4 G/T (magnetic field conversion factor) times the square of 10 2 cm/m (linear distance conversion factor). 10 8 Mx/Wb = 10 4 G/T × (10 2 cm/m) 2.
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.
This inequality would cause serious problems in standardization of the conductor size and so, to overcome it, three-phase systems are used where the three currents are equal in magnitude and have 120 degrees phase difference. Three similar coils having mutual geometrical angles of 120 degrees create the rotating magnetic field in this case.
The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).