Search results
Results from the WOW.Com Content Network
The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most n (relative to a symmetric generating set) is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial ...
The free abelian group has a polynomial growth rate of order d. The discrete Heisenberg group H 3 {\displaystyle H_{3}} has a polynomial growth rate of order 4. This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem .
A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result ...
Every polynomial equation in one variable has a Galois group, that is a certain permutation group on its roots. The axioms of a group formalize the essential aspects of symmetry. Symmetries form a group: they are closed because if you take a symmetry of an object, and then apply another symmetry, the result will still be a symmetry. The ...
In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup H ≤ G {\displaystyle H\leq G} such that H has property P.
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
The group G is a 2-group, that is, every element in G has finite order that is a power of 2. [1] The group G is periodic (as a 2-group) and not locally finite (as it is finitely generated). As such, it is a counterexample to the Burnside problem. The group G has intermediate growth. [2] The group G is amenable but not elementary amenable. [2]
The group-valued functor of F can also be described using the formal group ring H of F. For simplicity we will assume that F is 1-dimensional; the general case is similar. For any cocommutative Hopf algebra, an element g is called group-like if Δg = g ⊗ g and εg = 1, and the group-like elements form a group under multiplication. In the case ...