Ads
related to: group with polynomial growth definition in algebra examplesThis site is a teacher's paradise! - The Bender Bunch
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Worksheet Generator
Search results
Results from the WOW.Com Content Network
The order of growth is then the least degree of any such polynomial function p. A nilpotent group G is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index.
A finite group has constant growth—that is, polynomial growth of order 0—and this includes fundamental groups of manifolds whose universal cover is compact. If M is a closed negatively curved Riemannian manifold then its fundamental group π 1 ( M ) {\displaystyle \pi _{1}(M)} has exponential growth rate.
For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups. This terminology is also used when P is just another group.
A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result ...
Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example: Gromov's polynomial growth theorem; Stallings' ends theorem; Mostow rigidity theorem. Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space.
Applications of group theory abound. Almost all structures in abstract algebra are special cases of groups. Rings, for example, can be viewed as abelian groups (corresponding to addition) together with a second operation (corresponding to multiplication). Therefore, group theoretic arguments underlie large parts of the theory of those entities.
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory , so named in honor of ...
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
Ads
related to: group with polynomial growth definition in algebra examplesThis site is a teacher's paradise! - The Bender Bunch