enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Smile contains k-means and various more other algorithms and results visualization (for java, kotlin and scala). Julia contains a k-means implementation in the JuliaStats Clustering package. KNIME contains nodes for k-means and k-medoids. Mahout contains a MapReduce based k-means. mlpack contains a C++ implementation of k-means. Octave contains ...

  3. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  4. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  5. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    Julia contains a k-medoid implementation of the k-means style algorithm (fast, but much worse result quality) in the JuliaStats/Clustering.jl package. KNIME includes a k-medoid implementation supporting a variety of efficient matrix distance measures, as well as a number of native (and integrated third-party) k-means implementations

  6. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  7. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM algorithm such as clustering using the soft k-means algorithm, and emphasizes the variational view of the EM algorithm, as described in Chapter 33.7 of version 7.2 (fourth edition).

  8. No. 6 Florida focused amid unbeaten start, ready for Stetson

    www.aol.com/no-6-florida-focused-amid-042544008.html

    As a legitimate national championship contender, No. 6 Florida knows better than to throw a parade over its undefeated start in nonconference play.

  9. k-SVD - Wikipedia

    en.wikipedia.org/wiki/K-SVD

    In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.