Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if X has a Poisson distribution with expected value λ then the variance of X is also λ, and = (< +) (+ /)
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem
If X 1 is a normal (μ 1, σ 2 1) random variable and X 2 is a normal (μ 2, σ 2 2) random variable, then X 1 + X 2 is a normal (μ 1 + μ 2, σ 2 1 + σ 2 2) random variable. The sum of N chi-squared (1) random variables has a chi-squared distribution with N degrees of freedom. Other distributions are not closed under convolution, but their ...
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
Furthermore, it was shown by Fackler [2] that there is a universal formula for all three distributions, called the (united) Panjer distribution. The more usual parameters of these distributions are determined by both a and b. The properties of these distributions in relation to the present class of distributions are summarised in the following ...
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.