Search results
Results from the WOW.Com Content Network
The basic orbit determination task is to determine the classical orbital elements or Keplerian elements, ,,,,, from the orbital state vectors [,], of an orbiting body with respect to the reference frame of its central body. The central bodies are the sources of the gravitational forces, like the Sun, Earth, Moon and other planets.
Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit . There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in ...
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
In orbital mechanics (a subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times.
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω , it is the angle from a specified reference direction, called the origin of longitude , to the direction of the ascending node (☊), as ...
A two-line element set (TLE, or more rarely 2LE) or three-line element set (3LE) is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in time, the epoch. Using a suitable prediction formula, the state (position and velocity) at any point in the past or future can be estimated to some accuracy.
† Elements with 7p electrons have been discovered, but their electronic configurations are only predicted – save the exceptional Lr, which fills 7p 1 instead of 6d 1. ‡ For the elements whose highest occupied orbital is a 6d orbital, only some electronic configurations have been confirmed. (Mt, Ds, Rg and Cn are still missing).