Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
[1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...
() operations, which force us to visit every node in ascending order (such as printing the entire list), provide the opportunity to perform a behind-the-scenes derandomization of the level structure of the skip-list in an optimal way, bringing the skip list to () search time. (Choose the level of the i'th finite node to be 1 plus the number ...
The decorator pattern is a design pattern used in statically-typed object-oriented programming languages to allow functionality to be added to objects at run time; Python decorators add functionality to functions and methods at definition time, and thus are a higher-level construct than decorator-pattern classes.
In computational complexity theory, the element distinctness problem or element uniqueness problem is the problem of determining whether all the elements of a list are distinct. It is a well studied problem in many different models of computation.
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
Strand sort is a recursive sorting algorithm that sorts items of a list into increasing order. It has O(n 2) worst-case time complexity, which occurs when the input list is reverse sorted. [1] It has a best-case time complexity of O(n), which occurs when the input is already sorted. [citation needed]