enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-play - Wikipedia

    en.wikipedia.org/wiki/Self-play

    In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.

  3. AlphaZero - Wikipedia

    en.wikipedia.org/wiki/AlphaZero

    AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."

  4. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    All 49 games were learned using the same network architecture and with minimal prior knowledge, outperforming competing methods on almost all the games and performing at a level comparable or superior to a professional human game tester. [15] Deep reinforcement learning reached another milestone in 2015 when AlphaGo, [16] a computer program ...

  5. Matchbox Educable Noughts and Crosses Engine - Wikipedia

    en.wikipedia.org/wiki/Matchbox_Educable_Noughts...

    It was designed to play human opponents in games of noughts and crosses (tic-tac-toe) by returning a move for any given state of play and to refine its strategy through reinforcement learning. This was one of the first types of artificial intelligence.

  6. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    This learning system was a forerunner of the Q-learning algorithm. [19] In 2014, Google DeepMind patented [20] an application of Q-learning to deep learning, titled "deep reinforcement learning" or "deep Q-learning" that can play Atari 2600 games at expert human levels.

  7. Machine learning in video games - Wikipedia

    en.wikipedia.org/.../Machine_learning_in_video_games

    The deep learning model consisted of 2 ANN, a policy network to predict the probabilities of potential moves by opponents, and a value network to predict the win chance of a given state. The deep learning model allows the agent to explore potential game states more efficiently than a vanilla MCTS.

  8. AlphaGo - Wikipedia

    en.wikipedia.org/wiki/AlphaGo

    AlphaGo is a computer program that plays the board game Go. [1] It was developed by the London-based DeepMind Technologies, [2] an acquired subsidiary of Google.Subsequent versions of AlphaGo became increasingly powerful, including a version that competed under the name Master. [3]

  9. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...