Search results
Results from the WOW.Com Content Network
Transition graph with transition probabilities, exemplary for the states 1, 5, 6 and 8. There is a bidirectional secret passage between states 2 and 8. The image to the right describes a discrete-time Markov chain modeling Pac-Man with state-space {1,2,3,4,5,6,7,8,9}. The player controls Pac-Man through a maze, eating pac-dots.
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. [64] Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate ...
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain. [5]
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [ 3 ] [ 4 ] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.
The possible values of X i form a countable set S called the state space of the chain. [1] Markov chains are often described by a sequence of directed graphs, where the edges of graph n are labeled by the probabilities of going from one state at time n to the other states at time n + 1, (+ = =).
As a result, it has a unique stationary distribution = {,}, where corresponds to the proportion of time spent in state after the Markov chain has run for an infinite amount of time. In DNA evolution, under the assumption of a common process for each site, the stationary frequencies π A , π G , π C , π T {\displaystyle \pi _{A},\,\pi _{G ...
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...