Search results
Results from the WOW.Com Content Network
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The Double Exponential Moving Average (DEMA) indicator was introduced in January 1994 by Patrick G. Mulloy, in an article in the "Technical Analysis of Stocks & Commodities" magazine: "Smoothing Data with Faster Moving Averages" [1] [2] It attempts to remove the inherent lag associated with Moving Averages by placing more weight on recent values.
It shows the slope (i.e. derivative) of a triple-smoothed exponential moving average. [1] [2] The name Trix is from "triple exponential." TRIX is a triple smoothed exponential moving average used in technical analysis to follow trends. Positive TRIX values indicate bullish price trends, while negative TRIX values indicate bearish price trends.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
This quantity determines whether the infection will increase sub-exponentially, die out, or remain constant: if R 0 > 1, then each person on average infects more than one other person so the disease will spread; if R 0 < 1, then each person infects fewer than one person on average so the disease will die out; and if R 0 = 1, then each person ...
Exponential moving averages highlight recent changes in a stock's price. By comparing EMAs of different lengths, the MACD series gauges changes in the trend of a stock. The difference between the MACD series and its average is claimed to reveal subtle shifts in the strength and direction of a stock's trend.