Search results
Results from the WOW.Com Content Network
pH partition is the tendency for acids to accumulate in basic fluid compartments, and bases to accumulate in acidic compartments. The reason for this phenomenon is that acids become negatively electric charged in basic fluids, as they donate a proton. On the other hand, bases become positively electric charged in acid fluids, as they receive a ...
The isohydric principle is the phenomenon whereby multiple acid/base pairs in solution will be in equilibrium with one another, tied together by their common reagent: the hydrogen ion and hence, the pH of solution. That is, when several buffers are present together in the same solution, they are all exposed to the same hydrogen ion activity.
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
The charge of a molecule depends upon the pH of its solution. In an acidic medium, basic drugs are more charged and acidic drugs are less charged. The converse is true in a basic medium. For example, Naproxen is a non-steroidal anti-inflammatory drug that is a weak acid (its pKa value is 5.0). The gastric juice has a pH of 2.0. It is a three ...
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
In metallurgy, the partition coefficient is an important factor in determining how different impurities are distributed between molten and solidified metal. It is a critical parameter for purification using zone melting, and determines how effectively an impurity can be removed using directional solidification, described by the Scheil equation. [6]
Fugacity and BCF relate to each other in the following equation: = [6] where Z Fish is equal to the Fugacity capacity of a chemical in the fish, P Fish is equal to the density of the fish (mass/length 3), BCF is the partition coefficient between the fish and the water (length 3 /mass) and H is equal to the Henry's law constant (Length 2 /Time 2) [6]