Search results
Results from the WOW.Com Content Network
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.
{{convert|100|lb|kg}} → 100 pounds (45 kg) The unit-codes should be treated as case-sensitive: {{convert|100|Mm|mm}} → 100 megametres (1.0 × 10 11 mm) The output of {{convert}} can display multiple converted units, if further unit-codes are specified after the second unnamed parameter (without the pipe separator). Typical combination ...
power rating is specified in terms of apparent power (KVA or MVA), since the exact power factor will be determined by the external factors; [5] power factor (PF) is the nominal power factor for other ratings; usually PF = 0.8; [5] insulation class (B, F, H) for the primary coil. Typical value is F, although older generators might use class B; [5]
In direct current (DC) circuits, this product is equal to the real power, measured in watts. [3] The volt-ampere is dimensionally equivalent to the watt: in SI units, 1 V⋅A = 1 W. VA rating is most used for generators and transformers, and other power handling equipment, where loads may be reactive (inductive or capacitive).
In the domain of energy storage and conversion technologies, such as batteries, fuel cells, motors, and power supply units, power density is a crucial consideration. Here, power density often refers to the volume power density, quantifying how much power can be accommodated or delivered within a specific volume (W/m 3 ).
Distribution transformers typically have ratings less than 200 kVA, [3] although some national standards allow units up to 5000 kVA to be described as distribution transformers. Since distribution transformers are energized 24 hours a day (even when they don't carry any load), reducing iron losses is vital in their design.
Nameplate capacity, also known as the rated capacity, nominal capacity, installed capacity, maximum effect or gross capacity, [1] is the intended full-load sustained output of a facility such as a power station, [2] [3] electric generator, a chemical plant, [4] fuel plant, mine, [5] metal refinery, [6] and many others.
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...