Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Minkowski sums are used in motion planning of an object among obstacles. They are used for the computation of the configuration space, which is the set of all admissible positions of the object. In the simple model of translational motion of an object in the plane, where the position of an object may be uniquely specified by the position of a ...
The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice versa. This is a special case of the previous two properties, as an independent ...
If is a vector subspace of a real or complex vector space then there always exists another vector subspace of , called an algebraic complement of in , such that is the algebraic direct sum of and (which happens if and only if the addition map is a vector space isomorphism). In contrast to algebraic direct sums, the existence of such a ...
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
c is a strong negator (aka fuzzy complement). A function c satisfying axioms c1 and c3 has at least one fixpoint a * with c(a *) = a *, and if axiom c2 is fulfilled as well there is exactly one such fixpoint. For the standard negator c(x) = 1-x the unique fixpoint is a * = 0.5 . [2]
Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.
As with all finite 2-dimensional lattices, its Hasse diagram is an st-planar graph. In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition, Modular law a ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b