enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    Hence, the set {banana, apple, pear} has the same cardinality as {yellow, red, green}. With infinite sets such as the set of integers or rational numbers, the existence of a bijection between two sets becomes more difficult to demonstrate. The rational numbers seemingly form a counterexample to the continuum hypothesis: the integers form a ...

  3. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...

  4. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  5. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    The set of real algebraic numbers is countably infinite (assign to each formula its Gödel number.) So the cardinality of the real algebraic numbers is . Furthermore, the real algebraic numbers and the real transcendental numbers are disjoint sets whose union is .

  6. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    Notably, ℵ ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers 2 ℵ 0: For any natural number n ≥ 1, we can consistently assume that 2 ℵ 0 = ℵ n, and moreover it is possible to assume that 2 ℵ 0 is as least as large ...

  7. Beth number - Wikipedia

    en.wikipedia.org/wiki/Beth_number

    Because of Cantor's theorem, each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals, the corresponding beth number is defined to be the supremum of the beth numbers for all ordinals strictly smaller than :

  8. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  9. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.