Search results
Results from the WOW.Com Content Network
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
A common visual representation of forces acting in concert is the free body diagram, which schematically portrays a body of interest and the forces applied to it by outside influences. [22] For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force , friction ...
In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the force is applied. It is the straight line through the point at which the force is applied, and is in the same direction as the vector F →. [1] [2]
This image is a derivative work of the following images: File:Force.png licensed with PD-self . 2007-12-28T22:31:03Z Penubag 316x316 (33426 Bytes) {{Information |Description= A few images illustrating forces |Source=self-made using compiled images within Wikipedia or created by me through MS Word |Date= 12/28/07 |Author= [[User:Penubag|Penubag]] |Permission= No rights r
F 2. gravitational force by object on earth (upward) F 3. force by support on object (upward) F 4. force by object on support (downward) Forces F 1 and F 2 are equal, due to Newton's third law; the same is true for forces F 3 and F 4. Forces F 1 and F 3 are equal if and only if the object is in equilibrium, and no other forces are applied ...
The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface. [4]: ch.12 [5]
Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. [1] In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.