Search results
Results from the WOW.Com Content Network
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
"High school physics textbooks" (PDF). Reports on high school physics. American Institute of Physics; Zitzewitz, Paul W. (2005). Physics: principles and problems. New York: Glencoe/McGraw-Hill. ISBN 978-0078458132
A common visual representation of forces acting in concert is the free body diagram, which schematically portrays a body of interest and the forces applied to it by outside influences. [22] For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force , friction ...
In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the force is applied. It is the straight line through the point at which the force is applied, and is in the same direction as the vector F →. [1] [2]
This image is a derivative work of the following images: File:Force.png licensed with PD-self . 2007-12-28T22:31:03Z Penubag 316x316 (33426 Bytes) {{Information |Description= A few images illustrating forces |Source=self-made using compiled images within Wikipedia or created by me through MS Word |Date= 12/28/07 |Author= [[User:Penubag|Penubag]] |Permission= No rights r
Approximate force applied by the motors of a Tesla Model S during maximal acceleration [22] 25.5 to 34.5 kN The estimated bite force of a large 6.7 m (22 ft) adult saltwater crocodile [23] 10 5 N 100 kN The average force applied by seatbelt and airbag to a restrained passenger in a car which hits a stationary barrier at 100 km/h [24] 569 kN
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
F 2. gravitational force by object on earth (upward) F 3. force by support on object (upward) F 4. force by object on support (downward) Forces F 1 and F 2 are equal, due to Newton's third law; the same is true for forces F 3 and F 4. Forces F 1 and F 3 are equal if and only if the object is in equilibrium, and no other forces are applied ...