Search results
Results from the WOW.Com Content Network
Cardano and other Italian mathematicians, notably Scipione del Ferro, in the 1500s created an algorithm for solving cubic equations which generally had one real solution and two solutions containing an imaginary number. Because they ignored the answers with the imaginary numbers, Cardano found them useless.
In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and
One may also use Newton's method to solve systems of k equations, which amounts to finding the (simultaneous) zeroes of k continuously differentiable functions :. This is equivalent to finding the zeroes of a single vector-valued function F : R k → R k . {\displaystyle F:\mathbb {R} ^{k}\to \mathbb {R} ^{k}.}
In elementary algebra, methods such as the quadratic formula are taught for solving all first degree and second degree polynomial equations in one variable. There are also formulas for the cubic and quartic equations. For higher degrees, the Abel–Ruffini theorem asserts that there can not exist a general formula in radicals.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
A simple circular slide rule, made by Concise Co., Ltd., Tokyo, Japan, with only inverse, square, and cubic scales. On the reverse is a handy list of 38 metric / imperial conversion factors. A Russian circular slide rule built like a pocket watch that works as single cursor slide rule since the two needles are ganged together
This 13th-century book contains the earliest complete solution of 19th-century Horner's method of solving high order polynomial equations (up to 10th order). It also contains a complete solution of Chinese remainder theorem , which predates Euler and Gauss by several centuries.
Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.