Search results
Results from the WOW.Com Content Network
In this article, spanning tree is meant by an unqualified tree unless otherwise stated. A given network graph can contain a number of different trees. The branches removed from a graph in order to form a tree are called links; the branches remaining in the tree are called twigs. For a graph with n nodes, the number of branches in each tree, t ...
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.
The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such ...
Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has height of 2. Sibling - Nodes that share the same parent node. A node p is an ancestor of a node q if it exists on the path from q to the root. The node q is then ...
For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.
The level ancestor query LA(v,d) requests the ancestor of node v at depth d, where the depth of a node v in a tree is the number of edges on the shortest path from the root of the tree to node v. It is possible to solve this problem in constant time per query, after a preprocessing algorithm that takes O( n ) and that builds a data structure ...
Čulík & Wood (1982) define the "right spine" of a binary tree to be the path obtained by starting from the root and following right child links until reaching a node that has no right child. If a tree has the property that not all nodes belong to the right spine, there always exists a right rotation that increases the length of the right spine.